
Journal of Statistical Physics � 2251

Journal of Statistical Physics, Vol. 94, Nos. 3�4, 1999

Probability Metrics and Uniqueness of the Solution to
the Boltzmann Equation for a Maxwell Gas
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We consider a metric for probability densities with finite variance on Rd, and
compare it with other metrics. We use it for several applications both in prob-
ability and in kinetic theory. The main application in kinetic theory is a unique-
ness result for the solution of the spatially homogeneous Boltzmann equation
for a gas of true Maxwell molecules.
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1. INTRODUCTION

Denote by Ps(Rd ), s>0, the class of all probability distributions F on Rd,
d�1, such that

|
R d

|v| s dF(v)<�

We introduce a metric on Ps(Rd ) by

ds(F, G)= sup
! # R d

| f� (!)& ĝ(!)|
|!| s (1)

where f� is the Fourier transform of F,

f� (!)=|
Rd

e&i! } v dF(v)
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Let us write s=m+:, where m is an integer and 0�:<1. In order
that ds(F, G) be finite, it suffices that F and G have the same moments up
to order m.

The norm (1) has been introduced in ref. 6 to investigate the trend to
equilibrium of the solutions to the Boltzmann equation for Maxwell
molecules. There, the case s=2+:, :>0, was considered. Further applica-
tions of ds , with s=4, were studied in ref. 3, while the cases s=2 and
s=2+:, :>0, have been considered in ref. 4 in connection with the so-
called Mc Kean graphs.(8)

In this paper, we shall be interested with the case s=2. To understand
why this case separates in a natural way from the other ones, let us briefly
introduce and discuss other well-known metrics on Ps(R

d ).
Let F, G in Ps(R

d ), and let 6(F, G) be the set of all probability dis-
tributions L in Ps(R

d_Rd ) having F and G as marginal distributions. Let

Ts(F, G)= inf
L # 6(F, G) | |v&w| s dL(v, w) (2)

Then {s=T 1�s
s metrizes the weak-* topology TW

*
on Ps(R

d ). We note that
T1 is the Kantorovich�Vasershtein distance of F and G.(7, 18) For a detailed
discussion, and application of these distances to statistics and information
theory, see Vajda.(17) See also ref. 10 for a recent application to kinetic theory.

The case s=2 was introduced and studied independently by
Tanaka(15) who, in the one-dimensional case d=1, applied T2 to the study
of Kac's equation. Subsequently, the properties of T2 were studied in the
multidimensional case by Murata and Tanaka.(9) Applications to the
kinetic theory of rarefied gases were finally studied by Tanaka in ref. 16;
several of these applications were given a simplified proof in ref. 12.

The importance of Tanaka's distance {2 mainly relies on its convexity
and superadditivity with respect to rescaled convolutions. We recall this
property, that is at the basis of most of the applications of T2 .

Let [X0 , Y0], [X1 , Y1] be two independent pairs of random
variables, and let F i (resp. Gi) be the probability distribution of Xi (resp.
Yi), i=0, 1. For 0<*<1, let F* (resp. G*) be the probability distribution
of - * X0+- 1&* X1 (resp. - * Y0+- 1&* Y1), i.e.

F*=
1

*d�2 F0 \ }

- *+ V
1

(1&*)d�2 F1 \ }

- 1&*+ (3)

Then,

T2(F* , G*)�*T2(F0 , G0)+(1&*) T2(F1 , G1) (4)
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Superadditivity is also known for convex functionals (relative
entropies), like Boltzmann's relative entropy

H( f | M f )=|
Rd

f (v) log
f (v)

M f (v)
dv (5)

where f is a probability density and M f is the Gaussian density with the
same mean vector and variance as those of f. This means that the property
(4) holds with T2 replaced by H and [G0 , G1] replaced by [M f0, M f1].
This is a consequence of Shannon's entropy power inequality (Cf. refs. 13
and 1). The same property holds for the relative Fisher information,

I( f | M f )=|
R d

|{ log f (v)&{ log M f (v)|2 f (v) dv (6)

(see again refs. 13 and 1). As discussed by Csiszar, (5) by means of the
relative entropy H, one can define the so-called H-neighbourhoods. Even if
those do not define a topological space, in the usual sense, their topological
structure is finer than the metric topology defined by the total variation
distance,

&( f, g)=| | f (v)& g(v)| dv

in the sense that

&( f, g)�- 2H( f | g) (7)

which is the so-called Csiszar�Kullback inequality.
It turns out that these properties of superadditivity and convexity also

hold for d2 , the proofs being in fact much more simple. As an illustration
of the interest of these properties, we shall give a version of the central limit
theorem and a very simple proof of Kac's theorem.

We shall also apply d2 to the study of the Boltzmann equation with
Maxwellian molecules,

�f
�t

(t, v)=Q( f, f )(t, v)

=|
R3_S 2

_ \u } n
|u| + [ f (v$) f (w$)& f (v) f (w)] dw dn (8)
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where u=v&w is the relative velocity of colliding particles with velocity v
and w, and

v$=
v+w

2
+

|u|
2

n, w$=
v+w

2
&

|u|
2

n

are the postcollisional velocities. _(&) is a nonnegative function which for
true Maxwell molecules has a nonintegrable singularity of the form
(1&&)&5�4 as & � 1. Usually, one truncates _ in some way, so that it
become integrable (cut-off assumption).

We shall prove that d2 shares a remarkable property with Tanaka's
distance: it is nonexpanding with time along trajectories of the Boltzmann
equation; that is, if f and g are two such solutions,

d2( f (t), g(t))�d2( f (0), g(0)) (9)

This holds even if _ is singular. As an immediate corollary, we obtain that
the solution to the Cauchy problem for the Boltzmann equation is unique.
Up to our knowledge, this is so far the only uniqueness result available for
long-range interactions.

The organization of the paper is as follows. First, in Section 2, we
investigate the connections between several distances on P2(Rd ), including
d2 and {2 . In Section 3, we establish the basic properties of superadditivity
for d2 and give applications. Then, in Section 4, we apply this metric to the
study of the Boltzmann equation.

2. METRICS ON P2(Rd)

In order that d2 be well-defined, we need to restrict it to some space
of probability densities with the same mean vector. For simplicity, we shall
restrict to probability measures with zero mean vector, and we shall work
on

D_={F # P2(Rd ); | vi dF(v)=0, | |v| 2 dF(v)=d } _= (10)

where _ is some positive real number. We begin with two elementary
lemmas.

Lemma 1. Let (Fn) in D_ , Fn ( F in P0(Rd ). Then

F # D_ � lim
K � �

sup
n � �

| |v|2 1 |v|�K dFn(v)=0 (11)

622 Toscani and Villani



Proof. It is clear that if limK � � supn � � � |v| 2 1 |v|�K dFn(v)=0, then
F # D_ . On the other hand, if this condition is not satisfied, then there
exists =>0 and (Kn) � � with � |v| 2 1 |v|�Kn

dFn(v)�d } _&=. Since
|v|2 1 |v|�Kn

( |v|2, this implies that � |v|2 dF(v)�d_&=, hence F � D_ . K

Lemma 2. Let (Fn) and F in D_ , such that Fn ( F. Then, there
exists a nonnegative function , such that ,(r)�r � � as r � �, which can
be chosen smooth and convex, and a constant M>0, such that

sup
n

| ,( |v|2) dFn(v)�M (12)

Proof. Using Lemma 1, copy the construction that was done in ref. 6
for one single function: there exists k1 such that supn � |v|�k1

|v|2 dFn(v)�
1�2; then there exists k2�k1 such that supn � |v|�k2

|v|2 dFn(v)�1�4; and so
on. . . for all p�2, there exists kp�kp&1 such that

sup
n

|
|v|�kp

|v| 2 dFn(v)�
1
2 p

Then choose ,( |v|2)= p |v| 2 if |v| # [kp , kp+1); smooth this function and
slow its growth if necessary, as in ref. 6. K

In the sequel of the paper, for M>0, we shall denote by

PM
2+:(Rd )={F # D_ ; | |v| 2+: dF(v)�M= (13)

PM
, (Rd )={F # D_ ; | ,( |v|2) dF(v)�M= (14)

for , nonnegative, ,(r)�r � � as r � �. Lemma 2 enables us to restrict to
spaces PM

, in all the cases when one is interested with weak convergence
in D_ .

In addition to the metrics d2 and {={2 which were introduced in the
last section, we consider

v Prokhorov's distance \(F, G): for $�0 and U/Rd, we define

U $=[v # Rd; d(v, U )<$], U $]=[v # Rd; d(v, U )�$]

where d(v, U )=inf[&v&w&, w # U ]. Let

_(F, G)=inf[=>0�F(A)�G(A=)+= for all closed A/Rd]
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we set

\(F, G)=max[_(F, G), _(G, F )] (15)

v the (Cm)* distance &F&G&*m : for m�1, let Cm(Rd ) be the set of
m-times continuously differentiable functions, endowed with its natural
norm & }&m . Then let

&F&G&*m=sup {} | . dF(v) } , . # Cm, &.&m�1= (16)

Theorem 1. Let (Fn) in D_ and F in P2(Rd ). Then, the following
statements are equivalent.

(i) Fn ( F and F # D_ ;

(ii) {(Fn , F ) � 0;

(iii) \(Fn , F ) � 0 and F # D_ ;

(iv) For any m�1, &Fn&F&*m � 0, and F # D_ ;

(v) d2(Fn , F ) � 0.

Proof. Here we shall only show (i) � (v). First, if d2(Fn , F ) � 0, then
obviously, for all ! # Rd"[0], f� n(!) � f� (!); on the other hand, f� n(0)= f� (0)
=1. This entails that Fn ( F; it remains to prove that F # D_ . But for fixed !,
|!|=1, t�0, since the first derivatives of f� n and f� coincide at the origin,
and since their Fourier transforms are twice continuously differentiable,

|D2( f� n& f� )(0) } (!, !)|= } limt � 0

f� n(t!)& f� (t!)
t2 }�d2(Fn , F ) � 0

Conversely, suppose that Fn ( F # D_ . By Lemma 2, there exists ,
and M such that Fn # PM

, . By Lemma 3.1 of ref. 6, all D2f� n have a uniform
modulus of continuity. In particular, for =>0, there exists $>0 such that

\n |!|�$ O |D2f� n(!)&D2f� n(0)|�=

Since

f� n(!)& f� (!)
|!|2 =|

1

0
[D2f� n(t!)&D2f� n(0)] } \ !

|!|
,

!
|!|+ (1&t) dt

+
1
2

[D2f� n(0)&D2f� (0)] \ !
|!|

,
!

|!|+
&|

1

0
[D2f� (t!)&D2f� (0)] } \ !

|!|
,

!
|!|+ (1&t) dt
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we obtain

sup
|!|�$

| f� n(!)& f� (!)|
|!| 2 �=

On the other hand, clearly, there exists D>0 such that

|!|�D O
| f� n(!)& f� (!)|

|!|2 �=

Thus d2(Fn , F )�max[=, sup$ � |!| � D ( | f� n(!) & f� (!)| ) � |!|2] � max[=,
sup$�|!|�D 1�$2 | f� n(!)& f� (!)|]. Now, since Fn ( F we have

\!, f� n(!) � f� (!)

and since |D2f� n(!)|�d_ and Df� n(0)=0, ( f� n) is uniformly equicontinuous
on the compact set [$�|!|�D]. By Ascoli's theorem, this entails that
sup$�|!|�D | f� n(!)& f� (!)| goes to 0, and thus there exists n0�0 such that
for n�n0 , d2(Fn , F ))�=. K

Next, we would like to compare more precisely these different metrics.
We shall say that two metrics m1 and m2 define the same weak-* unifor-
mity on a set S/P2(Rd ) if for all =>0 there exists '>0 such that for all
F, G # S,

m1(F, G)�' O m2(F, G)�=,

m2(F, G)�' O m1(F, G)�=.

Theorem 2. Let M>0 and , be fixed. Then, for any m�1, {, \,
& }&*m and d2 define the same weak-* uniformity in PM

, .

In order to simplify the proof, we shall prove this theorem only on
PM

2+: , where the bounds are explicit. In all the sequel :>0, M>0 and
m�1 will be fixed. The main part of the proof has already been performed
in ref. 6, therefore we shall only ``fill the gaps.'' We split the proof in three
steps.

First Step. { and \ define the same weak-* uniformity on PM
2+: .

More precisely,

(a) {(F, G)2�(2M+8) \(F, G):�(:+2)+4\(F, G)2

(17)
(b) \(F, G)�{(F, G)3�2
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Proof. Part (a) is Theorem 5.2 of ref. 6. As for part (b), let ;>0,
then there exists L* # 6(F, G) such that

T2(F, G)=| |v&w|2 dL*(v, w)�;2L*( |v&w|�;)

Chosing ;=T2(F, G)1�3, we see that

L*( |v&w|�;)�;

By Theorem 5.1 of ref. 6, this implies that F(A)�G(A$])+; for all closed
A/Rd. Thus, \(F, G)�;={(F, G)3�2. K

Second Step. For all m�1, \ and & }&*m define the same weak-*
uniformity on P0(Rd ).

This is done by putting together Lemma 5.3 and Corollary 5.5 in ref. 6.

Third Step. For all m�1, & }&*m and d2 define the same weak-*
uniformity on PM

2+: . More precisely,

(a) &F&G&*d+3�Cd _(d+1)�(d+3)d2(F, G)2�(d+3)

(18)
(b) d2(F, G)�Cd M2�(2+:)(&F&G&*1 ):�(2+:)

Proof. (a) is an easy adaptation of Lemma 5.7 in ref. 6. Let
. # Cd+3(Rd ), &.&d+3�1; let R�1. Let /R be a smooth function such that
0�/R�1, /R=1 for |v|�R, /R(v)=0 for |v|�R+1. We estimate first the
tails of the distributions.

} | (1&/R) .d(F&G) }�|
|v|�R

dF+|
|v|�R

dG�
2_
R2

Then, by Parseval,

} | /R.d(F&G) }
= } | ./R@(!)[ f� (!)& ĝ(!)] d! }
�sup

R d

| f� (!)& ĝ(!)|
|!|2 sup

R d
[/R .@ (!)(1+|!|d+3)] |

|!|2

1+|!|d+3 d!
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Using the classical inequality

sup
!

[(1+|!|m) |/R.@ (!)|]

�Cd sup
v

[(1+|v| )d+1 |Dm(/R .)(v)|]�Cd (1+R)d+1

we conclude that

} | .d(F&G) }�2_
R2+Cd Rd+1d2(F, G)

Optimizing over R, we get the desired result.
As for (b): clearly,

| f� (!)& ĝ(!)|
|!|2 � } | cos(! } v)

|!|2 d(F&G) }+ } | sin(! } v)
|!|2 d(F&G) }

Let us estimate for instance the first term in the right-hand side. First we
note that

|
cos(! } v)

|!| 2 d(F&G)=|
cos(! } v)&1

|!|2 d(F&G)

For fixed !,

8!(v)=
cos(! } v)&1

|!|2

is a C2 function, vanishing at the origin, as well as its first-order
derivatives, and elementary estimates show that |8$!(v)|�|v| , 8!(v)�
|v|2�2, hence &8!/R &1�CR2, whence by definition

1
CR2 } | 8!/Rd(F&G) }�&F&G&*1

On the other hand,

} | (1&/R) 8!d(F&G) }�2M
R:

Optimizing over R, we get the result. K

627Boltzmann Equation for a Maxwell Gas



3. SUPERADDITIVITY

Let [X0 , Y0] and [X1 , Y1] be two independent pairs of random
variables with zero mean vector. Let Fi (resp. Gi) denote the law of Xi

(resp. Yi). For 0<*<1, the law of

X*=- * X0+- 1&* X1

is

F*=
1

*d�2 F0 \ }

- *+ V
1

(1&*)d�2 F1 \ }

- 1&*+ (19)

Theorem 3. d2 is superadditive with respect to the rescaled con-
volution, i.e.

d2(F* , G*)�*d2(F0 , G0)+(1&*) d2(F1 , G1) (20)

Corollary. The rescaled convolution is continuous with respect to
d2 : with obvious notations, if d2(F n

0 , G0) � 0 and d2(F n
1 , G1) � 0, then

d2(F n
* , G*) � 0.

Proof. We denote by f� i and ĝi the Fourier transforms of Fi and Gi .
Since

f� *(!)= f� 0(- * !) f� 1(- 1&* !)

and an analogous formula holds for ĝ* , we have

d2(F* , G*)=sup
!

| f� 0(- * !) f� 1(- 1&* !)& ĝ0(- * !) ĝ1(- 1&* !)|
|!|2

=sup
! {(1&*) | f� 0(- * !)|

| f� 1(- 1&* !)& ĝ1(- 1&* !)|
(1&*) |!|2

+* | ĝ1(- 1&* !)|
| f� 0(- * !)& ĝ0(- * !)|

* |!|2 =
Since & f� 0&��1 and &ĝ1 &��1, this expression can be bounded by

(1&*) d2(F1 , G1)+*d2(F0 , G0) K

628 Toscani and Villani



Remark. This property is sufficient to imply that d2 is nonex-
pandive along solutions of the Boltzmann equation if d=2 (Cf. ref. 2). But
we shall show in the next section that this restriction can be dispended
with.

As an application, for X a random variable with law F, let us consider
the functional

J(X )=J(F )=d2(F, M F)=sup
!

| f� &MF@ |
|!|2 (21)

where this time MF is the Gaussian distribution with the same mean vector
and covariance matrix as F. The same proof as before shows the

Theorem 4. For any two independent random variables X0 and X1 ,
and 0<*<1,

J(- * X0+- 1&* X1)�*J(X0)+(1&*) J(X1) (22)

with equality if and only if X0 and X1 are gaussian variables with the same
mean vector and covariance matrix.

Proof. Suppose that there is equality in the proof of Theorem 3, with
G0 and G1 replaced by a centered gaussian probability law (one can always
reduce to this case). Suppose that F0{MF0. Let us denote by g0 and g1 the
densities of MF0 and MF1. Let (!n) such that

| f� 0(- * !n) f� 1(- 1&* !n)& ĝ0(- * !n) ĝ1(- 1&* !n)|
|!n |2

ww�n � � J(- * X0+- 1&* X1)

the left-hand side is bounded by

{(1&*) | f� 0(- * !n)|
| f� 1(- 1&* !n)& ĝ1(- 1&* !n)|

(1&*) |!n |2

+* | ĝ1(- 1&* !n)|
| f� 0(- * !n)& ĝ0(- * !n)|

* |!n |2 =
If |!n | � �, then | ĝ1(!n)|�1�2 for large n, and J(- * X0+- 1&* X1)�
(1&*) J(X1)+*�2J(X1), which is impossible since J(X1){0. Therefore,

629Boltzmann Equation for a Maxwell Gas



extracting a subsequence if necessary, we may assume that !n � ! # Rd. The
same argument shows then that !=0. But by definition,

| f� 0(- * !n)& ĝ0(- * !n)|
* |!n | 2 � 0

as n � �. hence, J(X*)=0, and J(X0)=J(X1)=0. K

As remarked by Murata and Tanaka(9) and others, a functional
having these properties can be used to several applications, as the following.

First Application: The Central Limit Theorem. Let (Xn) be a
sequence of independent identically distributed variables with finite
variance, and let

!n=
1

- n
(X1+ } } } +Xn) (23)

Then, if F denotes the common probability law of each Xn , Gn the prob-
ability law of !n , and G the gaussian probability law with the same mean
vector and covariance matrix as those of F,

d2(Gn , G) � 0 as n � � (24)

Moreover, given =>0, knowing d2(F, G) and a modulus of continuity of
D2f� at the origin, one can compute explicitly n0 such that for n�n0 ,
d2(Gn , G)�=.

Proof. For P and Q two probability distributions, let us denote by
P b Q the rescaled convolution 2&dP( } �- 2) V Q( } �- 2). Let 'k=!2 k , and
Pk its probability law, then, thanks to Theorem 4,

J('k+1)=J(Pk b Pk)�J(Pk)=J('k) :

(J('k)) is decreasing, hence converging to some limit l. Admit for a while
that there exists Q so that for some subsequence kp , d2(Pkp

, Q) � 0, so that
l=J(Q). Then, since the rescaled convolution is continuous with respect
to d2 , J(Pkp

b Pkp
) � J(Q b Q); but it is also J(Pkp+1) � l=J(Q), so that

J(Q b Q)=J(Q)
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This implies that Q is the gaussian distribution G, whence J('k) � 0. Now,
any integer n�1 can be written �n

0 :k 2k with :k # [0, 1], and

J(!n)�
1
n

: :k 2k J('k) � 0

Finally, to prove that (Pk) has a weak cluster point with respect to the
topology of d2 , it suffices to note that the Fourier transform of Fn is
f� n(!)=( f� (!�- n))n, whose second derivatives can be readily computed,

D2
ij \ f� \ !

- n++
n

=
n&1

n
Di f� \ !

- n+ D j f� \ !

- n+ f� \ !

- n+
n&2

+ f� \ !

- n+
n&1

D2
ij f� \ !

- n+
If one denotes by � a modulus of continuity of D2f� near 0, i.e.

|D2f� (!)&D2f� (0)|��( |!| )

where � is chosen to be increasing from 0, we obtain at once that for D2f� n
one can take as modulus of continuity

�n(t)=_2t2+� \ t

- n+
�n is bounded, uniformly in n, by

�1(t)=_2t2+�(t)

This is enough to conclude.
Stated in this form, this would seem to be only an overcomplicated

way of proving the central limit theorem; but the interest of this method is
that it can immediately lead to explicit computations. Indeed, let =>0, and
let us look for n0 such that for n�n0 , d2(Gn , G)�=. First, since J(Pk) is
decreasing, if we look for k0 such that J(Pk0

)�=. The proof of Theorem 4
clearly shows that

J(Pk+1)=J(Pk b Pk)�sup
! {inf \�( |!| ), \1+e&|!|2�2

2 + J(Pk)+=
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Let ' such that �(')�=. As long as J(Pk b Pk)�=, the supremum can only
be obtained for |!|�', hence J(Pk+1)�+J(Pk) with

+=
1+e&|!|2�2

2
<1

Therefore, one can take

k0=&
log J(X1)

log +

Now, for n�2k0, one writes

J(Xn)� :
k<k0

:k 2k

n
J(X1)+= :

k�k0

:k2k

n
�

2k0

n
J(X1)+=

and it suffices to choose n�2k0 J(X1)�= for this expression to be less
than 2=. K

Second Application: Kac's Theorem. Let X1 and X2 be two
independent random variables with finite variance, such that

{ X1

t
=X1 cos %+X2 sin %

X2

t
=&X1 sin %+X2 cos %

(25)

are independent for some % # R"(?�2) Z. Then X1 and X2 are gaussian.

Proof.

J( X1

t
)�J(X1) cos2 %+J(X2) sin2 %

(26)
J( X2

t
)�J(X1) sin2 %+J(X2) cos2 %

hence J( X1

t
)+J( X2

t
)�J(X1)+J(X2). But

{X1= X1

t
cos %& X2

t
sin %

X2= X1

t
sin %+ X2

t
cos %

(27)

by the same inequality, J(X1)+J(X2)�J(X1

t
)+J(X2

t
), so that there is

equality in (26), which implies that X1 and X2 are gaussian. K
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4. APPLICATION TO THE BOLTZMANN EQUATION

In this section, we shall assume d=3 for simplicity, but all the results
can be generalized readily to any dimension d�2, or to the onedimen-
sional Kac model. The Boltzmann equation (8) can be studied in weak
form for a probability measure as well as for a distribution function,

d
dt | .(v) dF(v)=|

R3_R3_S 2
_ \u } n

|u| + [.(v$)&.(v)] dF(v) dF(w) dn

we shall study this with the conditions

| dF0(v) dv=1, | v dF0(v)=0, | v2 dF0(v)=3;

it is classical that these are preserved under the time-evolution of the
Boltzmann equation. Moreover, it is equivalent to use the Fourier trans-
form of the equation:(12)

�t f� (t, !)=|
S2

_ \! } n
|!| + [ f� (!+) f� (!&)& f� (!) f� (0)] dn (28)

where

{
!+=

!+|!| n
2

!&=
!&|!| n

2

(29)

and the initial conditions are such that

f� (0)=1, {f� (0)=0, {2f� (0)=&3

f� # C2(Rd). Note that !++!&=!, and |!+|2+|!&|2=|!|2.

Theorem 5. Let F and G be two solutions of the Boltzmann equa-
tion (8). Then, for all time t�0,

d2(F(t), G(t))�d2(F(0), G(0))

Before proving Theorem 5, we mention three useful corollaries.
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Corollary 5.1. Let F0 be a nonnegative measure with finite
variance. Then, there exists a unique weak solution F(t) of the Boltzmann
equation, such that F(0)=F0 .

Corollary 5.2. If F=(t) is a sequence of approximate solutions of
the Boltzmann equation, obtained by a standard cut-off procedure for
instance, then F= converges weakly to F. This entails in particular that such
results as the decrease of the Fisher information, or the decrease of
Tanaka's functional, which are known to hold for the cut-off equation, also
hold for the non cut-off equation.

Corollary 5.3. Let F0 be a nonnegative measure with finite
variance, and F(t) the associated solution of the Boltzmann equation. Let
M be the Maxwellian distribution with the same mean vector and variance
that F0 . Then d2(F(t), M ) is decreasing towards 0.

Proof of Theorem 5. Let F and G be two solutions of the
Boltzmann equation, and f� , ĝ their Fourier transforms. Then,

�t
( f� & ĝ)

|!| 2 =| _ \! } n
|!| + _

f� (!+) f� (!&)& ĝ(!+) ĝ(!&)
|!|2 &

f� (!)& ĝ(!)
|!|2 & dn

(30)

Now, we do the usual splitting

} f� (!+) f� (!&)& ĝ(!+) ĝ(!&)
|!|2 }

�| f� (!+)| } f� (!)& ĝ(!)
|!&|2 } |!&|2

|!| 2 +| ĝ(!&)| } f� (!+)& ĝ(!+)
|!+| 2 } |!+|2

|!|2

�sup } f� & ĝ
|!|2 } \ |!&| 2+|!+|2

|!| 2 +=sup } f� & ĝ
|!| 2 }

We set

h(t, !)=
f� (!)& ĝ(!)

|!|2

For cut-off molecules, let e be any fixed unit vector and let us denote by

S=|
S2

_(n } e) dn
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the total cross-section. By rotational invariance, for all !{0,

| _ \! } n
|!| +=S

and the preceding computation shows that

|�t h&Sh|�S &h&� (31)

Gronwall's lemma proves at once that for cut-off molecules, &h(t)&� is
nonincreasing.

Now, let us consider the case of true Maxwell molecules, where _(&)
is singular like (1&&)&5�4. This singularity corresponds to grazing colli-
sions, i.e., !+

t!, !&
t0. Since it is nonintegrable, S=�. Then we split

the right-hand side of (28) according to |1&&|�= or |1&&|<=. For the
first term, we use the preceding estimate, while for the other, we use the
fact that the singularity is cancelled by the vanishing of f� (!+) f� (!&)&
f� (!) f� (0) for grazing collisions. Indeed, as in ref. 12, let us write

| f� (!+) f� (!&)& f� (!) f� (0)|

�| f� (!+)| | f� (!+)& f� (!)|+| f� (!)| | f� (!&)& f� (0)|

� sup
|'|�sup( |!| , |!+|)

|{f� (')| |!+&!|+ sup
|'|�|!&|

|{f� (')| |!&|

Since |!+|, |!&|�|!|, |D2f� (!)|�d, and {f� (0)=0, we conclude that

| f� (!+) f� (!&)& f� (!) f� (0)|�C |!| |!&|�C |!|2 (1&&)1�2

where C depends only on the dimension. This implies that the integrand in
(28) is bounded by C(1&&)&3�4, and thus the integral is convergent,
uniformly in ! and in t. As a conclusion, setting

S==|
S 2

1 |1&n } e|�=_(n } e) dn

r==sup
!, t } |S 2

1 |1&(! } n)�|!| |<=_ \! } n
|!| + [ f� (!+) f� (!&)& f� (!) f� (0)] dn }

we obtain that r= � 0 as = � 0, and

|�t h(!, t)&S=h(!, t)|�S=&h&�(t)+r= (32)
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This is equivalent to

|�t(h(!, t) eS=t)|�S=&h( } , t) eS=t&�+r=eS=t

Integrating from 0 to t, we get

|h(!, t)| eS=t�|h(!, 0)|+|
t

0
d{(S= &h( } , {) eS={&�+r=eS={)

Hence, if H=(t)=&h( } , t) eS=t&� ,

H=(t)�H=(0)+|
t

0
r= eS= { d{+|

t

0
S=H({) d{

Now, by the generalized Gronwall inequality,

u(t)�.(t)+|
t

0
*({) u({) d{

implies

u(t)�.(0) exp {|
t

0
*({) d{=+|

t

0
exp {|

t

{
*({) d{= d.

d{
d{

Applying this inequality with *({)=S= and .(t)=H=(0)+� t
0 r=eS= { d{,

we obtain

H=(t)�H=(0) eS= t+tr=eS= t

namely

&h( } , t)&��&h( } , 0)&�+r= t

Letting = going to 0, we obtain &h( } , t)&��&h( } , 0)&� , i.e.

d2(F(t), G(t))�d2(F(0), G(0)) K
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